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Abstract. An introductory review of generalized parton distributions (GPDs) is given.

PACS. 13.40.Gp Electromagnetic form factors – 13.60.Fz Elastic and Compton scattering – 13.60.Hb
Total and inclusive cross-sections (including deep-inelastic processes)

1 Introduction

The present-day situation in hadron physics can be briefly
characterized in the following way.
i) We know what are the fundamental particles from which
the hadrons are built: quarks and gluons.
ii) Quark-gluon interactions are described by quantum
chromodynamics (QCD), and the QCD Lagrangian is
known.
iii) But we still need to understand how QCD works, —
i.e., to understand hadronic structure in terms of quark
and gluon fields.

Projecting quark and gluon fields onto hadronic states
|P 〉 gives matrix elements like 〈 0 | q̄α(z1) qβ(z2) |P 〉 (for
mesons) which can be interpreted as hadronic wave func-
tions. In the light-cone formalism [1], a hadron is described
by its Fock components in the infinite momentum frame.
For the nucleon, the Fock decomposition can be schemat-
ically written as |P 〉 = |qqq〉 + |qqqG〉 + |qqqq̄q〉 + . . . . In
principle, solving the bound-state equation H|P 〉 = E|P 〉
one should get the wave function |P 〉 containing complete
information about the hadron structure. In practice, the
equation (involving an infinite number of Fock compo-
nents) has not been solved. Moreover, the LC wave func-
tions are not directly accessible experimentally. The way
out in this situation is the description of hadron struc-
ture in terms of phenomenological functions. Among “old”
functions used for a long time we can list form factors,
usual parton densities, and distribution amplitudes. The
new functions, generalized parton distributions [2–4] (for
a recent review see [5]), are hybrids of form factors, parton
densities and distribution amplitudes. Furthermore, “old”
functions are limiting cases of “new” ones.
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Fig. 1. Elastic eN scattering in one-photon approximation.

2 Form factors

Form factors are defined through matrix elements of
electromagnetic and weak currents between hadronic
states. In particular, the nucleon electromagnetic form
factors measurable through elastic eN scattering (fig. 1)
are given by

〈 p′ |Jµ(0) | p 〉 = ū(p′)
[
γµF1(t) +

rνσµν

2mN
F2(t)

]
u(p) ,

(1)

where r = p − p′ is the momentum transfer and t = r2.
The electromagnetic current is given by the sum of its
flavor components Jµ(z) =

∑
a eaψ̄a(z)γµψa(z). The

form factors can also be written as sums over a, e.g.,
F1(t) =

∑
a eaF1a(t) for the helicity nonflip form factor

F1(t). At t = 0, these functions have well-known limiting
values. In particular, F1(t = 0) = eN =

∑
a Naea gives

the total electric charge of the nucleon (Nf is the number
of valence quarks of flavor a) and F2(t = 0) = κN gives
its anomalous magnetic moment.
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Fig. 2. Lowest-order pQCD factorization for DIS.

3 Usual parton densities

The parton densities are defined through forward matrix
elements of quark/gluon fields separated by lightlike dis-
tances. In the unpolarized case we have

〈 p | ψ̄a(−z/2)γµψa(z/2) | p 〉∣∣
z2=0

=

2pµ

∫ 1

0

[
e−ix(pz)fa(x) − eix(pz)fā(x)

]
dx . (2)

In the local limit z = 0, operators in this definition convert
into vector currents entering into the definition of form
factors. Since t = 0 for the forward matrix element, we
obtain the sum rule for the numbers of valence quarks∫ 1

0

[fa(x) − fā(x)] dx = Na . (3)

The definition of parton densities has the form of a
plane-wave decomposition. This observation allows to give
the momentum space interpretation: fa(ā)(x) is the prob-
ability to find a (ā)-quark with momentum xp inside a nu-
cleon with momentum p. The classic process to access the
usual parton densities is deep inelastic scattering (DIS)
γ∗N → X. Via the optical theorem its cross-section is
given by the imaginary part of the forward virtual Comp-
ton scattering amplitude. When the spacelike momentum
transfer q, q2 ≡ −Q2, is sufficiently large, perturbative
QCD factorization works. At the leading order, one deals
with the handbag diagram (fig. 2). Through simple alge-
bra 1

π Im 1/(q + xp)2 ≈ δ(x − xBj)/2(pq) one finds that
DIS measures parton densities at x = xBj, when the
parton momentum fraction equals the Bjorken variable
xBj = Q2/2(pq). Comparing parton densities to form fac-
tors, we note that the latter have a point vertex instead
of a lightlike separation, and p �= p′.

4 Nonforward parton densities

“Hybridization” of different parton distributions is the key
idea of the GPD approach. Let us combine form factors
with parton densities and write the flavor components
F1a(t) of form factors as integrals over the momentum

p
a

p
F  (x,t)

t

a

p p
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P = ( p + p  ) / 2

xP

Fig. 3. Form factor and wide-angle Compton scattering am-
plitude in terms of nonforward parton densities.

fraction x:

F1a(t) =
∫ 1

0

[Fa(x, t) −Fā(x, t)] dx . (4)

In the forward limit t = 0, the new objects, nonfor-
ward parton densities Fa(ā)(x, t) (NPDs), coincide with
the usual (“forward”) densities: Fa(ā)(x, t = 0) = fa(ā)(x).
NPDs can be also treated as Fourier transforms of the im-
pact parameter b⊥ distributions f(x, b⊥) describing the
variation of parton densities in the transverse plane.

An interesting question is the interplay between
x and t dependence of F1(x, t). The simplest factor-
ized ansatz Fa(x, t) = fa(x)F1(t) satisfies both the for-
ward constraint: Fa(x, t = 0) = fa(x) and the local
constraint (4). The reality may be more complicated:
light-cone wave functions with the Gaussian k⊥ depen-
dence Ψ(xi, ki⊥) ∼ exp[−∑

i k
2
i⊥/xiλ

2] suggest Fa(x, t) =
fa(x)ex̄t/2xλ2

. Taking fa(x) from existing parametriza-
tions like GRV and adjusting λ2 to provide a standard
value of the quark intrinsic transverse momentum 〈k2

⊥〉 ≈
(300 MeV)2, gives a reasonable description of the proton
form factor F1(t) in a wide range of momentum transfers
−t ∼ 1 − 10 GeV2 [6].

The same nonforward parton densities appear in the
handbag diagrams for the wide-angle real Compton scat-
tering (fig. 3). The handbag term in this case is the prod-
uct of a new form factor Ra

V (t) given by the 1/x moment
of Fa(x, t) and the amplitude of the Compton scattering
off an elementary fermion. For the cross-section, this gives

dσ
dt

=

[∑
a

e2aR
a
V (t)

]2
dσ
dt

∣∣∣∣
KN

, (5)

where dσ/dt|KN is the (Klein-Nishina) cross-section for
the Compton scattering off an electron.

The predictions based on handbag mechanism dom-
inance and NPDs [6,7] are in much better agreement
with existing Cornell data than the predictions based on
two-gluon hard exchange mechanism of asymptotic per-
turbative QCD: the predicted cross-section is too small
in the latter case. The absolute normalization for pre-
dictions is settled by the form of the nonperturbative
functions (NPDs in the handbag approach and nucleon
distribution amplitudes in the pQCD approach) which
were fixed by fitting the F1 form factor data. Still, when
there is an uncertain overall factor, it is risky to make
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Fig. 4. Lowest-order pQCD factorization for γ∗γ → π0 tran-
sition amplitude and for the pion EM form factor.

strong statements. Remarkably, the perturbative QCD
hard-scattering mechanism and soft handbag mechanism
give drastically different predictions for the polarization
asymmetry ALL [7]. Experiment E-99-114 recently per-
formed at Jefferson Lab [8] strongly favors the handbag
mechanism that predicts the value close to the asymme-
try for the scattering on a single quark.

5 Distribution amplitudes

Another example of nonperturbative functions describ-
ing the hadron structure are the distribution ampli-
tudes (DAs). They can be interpreted as light-cone wave
functions integrated over transverse momentum, or as
〈0| . . . |p〉 matrix elements of light-cone operators. In the
case of the pion we have

〈 0 | ψ̄d(−z/2)γ5γ
µψu(z/2) |π+(p) 〉∣∣

z2=0
=

ipµfπ

∫ 1

−1

e−iα(pz)/2ϕπ(α) dα , (6)

with x1 = (1+α)/2, x2 = (1−α)/2 being the fractions of
the pion momentum carried by the quarks. The distribu-
tion amplitudes describe the hadrons in situations when
the pQCD hard-scattering approach is applicable to ex-
clusive processes. The classic example is the process of
γ∗γ → π0 transition (fig. 4). Its amplitude is proportional
to the 1/(1 − α2) moment of ϕπ(α). The predictions for
the γ∗γ → π0 form factor based on two competing models
for the pion DA, the asymptotic ϕas

π (α) = 3
4 (1 − α2) and

Chernyak-Zhitnitsky DA ϕCZ
π (α) = 15

4 α
2(1−α2) differ by

factor of 5/3, which allows for an experimental discrimi-
nation between them.

Comparison with CLEO and CELLO data for the com-
bination Q2Fγ∗γπ0(Q2) favors ϕas(α). It is also worth not-
ing that perturbative QCD works here from rather small
values of momentum transfer Q2 ∼ 2 GeV2. Another clas-
sic application of pQCD to exclusive processes is the pion
electromagnetic form factor. With the asymptotic pion
DA ϕas

π (α), the hard pQCD contribution to Fπ(Q2) is
(2αs/π)(0.7 GeV2)/Q2, which is less than 1/3 of the ex-
perimental value. So, in this case we deal with the domi-
nance of the competing soft mechanism that is described
by nonforward parton densities, exactly in the same way
as the proton F p

1 (t) form factor discussed in the previous
section.

Fig. 5. Lowest-order hard subprocesses for deeply virtual pho-
ton and meson production.

6 Hard electroproduction processes

A more recent attempt to use perturbative QCD to ex-
tract new information about hadronic structure is the
study of deep exclusive photon [3] or meson [4,9] electro-
production reactions. In the hard kinematics when both
Q2 and s ≡ (p+ q)2 are large while the momentum trans-
fer t ≡ (p− p′)2 is small, one can use pQCD factorization
which represents the amplitudes as a convolution of a per-
turbatively calculable short-distance amplitude and non-
perturbative parton functions describing the hadron struc-
ture. The hard pQCD subprocesses in these two cases have
different structure (fig. 5). Since the photon is a pointlike
particle, the deeply virtual Compton scattering amplitude
has a structure similar to that of the γ∗γπ0 form factor:
the pQCD hard term is of zero order in αs, and there is
no competing soft contribution. Thus, we can expect that
pQCD works from Q2 ∼ 2 GeV2. On the other hand, the
deeply virtual meson production process is similar to the
pion EM form factor: the hard term has O(αs/π) ∼ 0.1
suppression factor. As a result, the dominance of the hard
pQCD term may be postponed to Q2 ∼ 5–10 GeV2.

One should also have in mind that the competing soft
mechanism can mimic the same power law Q2-behavior
(just like in case of pion and nucleon EM form factors).
Hence, a mere observation of a “right” power law behav-
ior of the cross-section may be insufficient to claim that
pQCD is already working. One should look at other char-
acteristics of the reaction, especially its spin properties, to
make strong statements about the reaction mechanism.

7 Deeply virtual Compton scattering and
generalized parton distributions

It is convenient to visualize DVCS in the γ∗N center-
of-mass frame, with the initial hadron and the virtual
photon moving in opposite directions along the z-axis.
Since the momentum transfer t is small, the hadron and
the real photon in the final state also move close to the
z-axis. This means that the virtual photon momentum
q = q′ − xBjp has the component −xBjp canceled by the
momentum transfer r. In other words, the momentum
transfer r has the longitudinal component r+ = xBjp

+,
where xBj = Q2/2(pq) is the DIS Bjorken variable. One
can say that DVCS has a skewed kinematics in which the
final hadron has the “plus”-momentum (1 − ζ)p+ that is
smaller than that of the initial hadron. In the particular
case of DVCS, we have ζ = xBj.
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Fig. 6. Comparison of NFPDs and OFPDs.

The parton picture for DVCS has some similarity
to that of DIS, with the main difference that the plus-
momenta of the incoming and outgoing quarks in DVCS
are not equal. They are Xp+ and (X − ζ)p+. Another
difference is that the invariant momentum transfer t in
DVCS is nonzero: the matrix element of partonic fields is
essentially nonforward.

Thus, the nonforward parton distributions (NFPDs)
Fζ(X; t) describing the hadronic structure in DVCS de-
pend on X, the fraction of p+ carried by the outgoing
quark, on ζ, the skewedness parameter characterizing the
difference between initial and final hadron momenta, and
on t, the invariant momentum transfer. In the forward
r = 0 limit, we have a reduction formula Fa

ζ=0(X, t = 0) =
fa(X) relating NFPDs with the usual parton densities.
The nontriviality of this relation is that Fζ(X; t) appears
in the amplitude of the exclusive DVCS process, while the
usual parton densities are measured from the cross-section
of the inclusive DIS reaction. Another limit for NFPDs is
zero skewedness ζ = 0, where they correspond to nonfor-
ward parton densities Fa

ζ=0(X, t) = Fa(X, t) . The local
limit relates NFPDs to form factors∫ 1

0

Fa
ζ (X, t) dX = F a

1 (t) . (7)

The description in terms of NFPDs has the advantage
of using the variables closest to those of the usual par-
ton densities. However, the initial and final hadron mo-
menta are not treated symmetrically in this scheme. Ji [3]
proposed to use symmetric variables in which the plus-
momenta of the hadrons are (1+ξ)P+ and (1−ξ)P+, and
those of the active partons are (x+ ξ)P+ and (x− ξ)P+,
P being the average momentum P = (p + p′)/2 (fig. 6).

To take into account the spin properties of the hadrons
and of the quarks, one needs 4 off-forward parton distri-
butions H,E, H̃, Ẽ, each of which is a function of x, ξ, t.
The skewedness parameter ξ ≡ r+/2P+ can be expressed
in terms of the Bjorken variable ξ = xBj/(2 − xBj), but
does not coincide with it. Depending on the value of x,
each OFPD has 3 distinct regions. When ξ < x < 1,
they are analogous to usual quark distributions; when
−1 < x < −ξ they are similar to antiquark distributions.
In the region −ξ < x < ξ, the “returning” quark has a
negative momentum, and should be treated as an outgo-
ing antiquark with momentum (ξ−x)P . The total qq̄-pair
momentum r = 2ξP is shared by the quarks in fractions
r(1+x/ξ)/2 and r(1−x/ξ)/2. Hence, OFPD in this region
−ξ < x < ξ is similar to a distribution amplitude Φ(α)
with α = x/ξ. In the local limit, OFPDs reduce to form

factors

∑
a

ea

1∫
−1

Ha(x, ξ; t) dx = F1(t) , (8)

∑
a

ea

1∫
−1

Ea(x, ξ; t) dx = F2(t) . (9)

The E function, like F2, comes with the rµ factor, hence,
it is invisible in DIS described by exactly forward r = 0
Compton amplitude. However, the t = 0, ξ = 0 limit of E
exists: Ea,ā(x, ξ = 0; t = 0) ≡ κa,ā(x). In particular, its
integral gives the proton anomalous magnetic moment κp,
and its first moment enters into Ji’s sum rule for the total
quark contribution Jq into the proton spin

∑
a

ea

1∫
−0

(κa(x) − κā(x)) dx = κp , (10)

Jq =
1
2

∑
a

1∫
−0

x [fa(x)+f ā(x)+κa(x)+κā(x)] dx . (11)

Note that only valence quarks contribute to κp, while Jq

involves also sea quarks. Furthermore, the values of κp,n

(unlike ep,n ≡ F p,n
1 (0)) strongly depend on dynamics, e.g.,

κN ∼ 1/mq in constituent quark models.

8 Double distributions

To model GPDs, two approaches are used: a direct cal-
culation in specific dynamical models: bag model, chi-
ral soliton model, light-cone formalism, etc., and a phe-
nomenological construction based on the relation of SPDs
to usual parton densities fa(x),∆fa(x) and form factors
F1(t), F2(t), GA(t), GP (t). The key question in the second
approach is the interplay between x, ξ and t dependencies
of GPDs. There are not so many cases in which the pat-
tern of the interplay is evident. One example is the func-
tion Ẽ(x, ξ; t) that is related to GP (t) form factor and is
dominated for small t by the pion pole term 1/(t −m2

π).
It is also proportional to the pion distribution amplitude
ϕ(α) ≈ 3

4fπ(1−α2) taken at α = x/ξ. The construction of
self-consistent models for other GPDs is performed using
the formalism of double distributions [10].

The main idea behind the double distributions is a
“superposition” of P+ and r+ momentum fluxes, i.e., the
representation of the parton momentum k+ = βP+ +(1+
α)r+/2 as the sum of a component βP+ due to the average
hadron momentum P (flowing in the s-channel) and a
component (1 + α)r+/2 due to the t-channel momentum
r. Thus, the double distribution f(β, α) (we consider here
for simplicity the t = 0 limit) looks like a usual parton
density with respect to β and like a distribution amplitude
with respect to α (fig. 7). The connection between the DD
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Fig. 7. Comparison of GPD and DD descriptions.

variables β, α and the OFPD variables x, ξ is obtained
from r+ = 2ξP+, which results in the basic relation x =
β + ξα.

The forward limit ξ = 0, t = 0 corresponds to x = β,
and gives the relation between DDs and the usual parton
densities: ∫ 1−|β|

−1+|β|
fa(β, α; t = 0) dα = fa(β) . (12)

The DDs live on the rhombus |α| + |β| ≤ 1 and they are
symmetric functions of the “DA” variable α: fa(β, α; t) =
fa(β,−α; t) (“Munich” symmetry [11] ). These restrictions
suggest a factorized representation for a DD in the form of
a product of a usual parton density in the β-direction and
a distribution amplitude in the α-direction. In particular,
a toy model for a double distribution

f(β, α) = 3[(1 − |β|)2 − α2] θ(|α| + |β| ≤ 1)

corresponds to the toy “forward” distribution f(β) =
4(1 − |β|)3, and the α-profile like that of the asymptotic
pion distribution amplitude.

To get usual parton densities from DDs, one should
integrate (scan) them over vertical lines β = x = const.
To get OFPDs H(x, ξ) with nonzero ξ from DDs f(β, α),
one should integrate (scan) DDs along the parallel lines
α = (x−β)/ξ with a ξ-dependent slope. One can call this
process the DD-tomography. The basic feature of OFPDs
H(x, ξ) resulting from DDs is that for ξ = 0 they reduce to
usual parton densities, and for ξ = 1 they have a shape like
a meson distribution amplitude. A more complete truth is
that such a DD modeling misses terms invisible in the
forward limit: meson exchange contributions and the so-
called D-term, which can be interpreted as σ-exchange.
The inclusion of the D-term induces nontrivial behavior
in the central |x| < ξ region (for details, see [5]).

9 Some lessons

Hadronic structure is a complicated subject, it requires
a study from many sides, in many different types of ex-
periments. The description of specific aspects of hadronic
structure is provided by several different functions: form
factors, usual parton densities, distribution amplitudes.
Generalized parton distributions provide a unified descrip-
tion: all these functions can be treated as particular or
limiting cases of GPDs H(x, ξ, t).

Usual parton densities f(x) correspond to the case
ξ = 0, t = 0. They describe a hadron in terms of probabil-
ities ∼ |Ψ |2. But QCD is a quantum theory: GPDs with
ξ �= 0 describe correlations ∼ Ψ∗

1Ψ2. Taking only one point
t = 0 corresponds to integration over impact parameters
b⊥ —information about the transverse structure is lost.

Form factors F (t) contain information about the dis-
tribution of partons in the transverse plane, but F (t)’s
involve integration over the momentum fraction x —
information about longitudinal structure is lost

Nonforward parton densities. A simple “hybridization”
of usual densities and form factors in terms of NPDs
F(x, t) (GPDs with ξ = 0) shows that behavior of F (t)
is governed both by transverse and longitudinal distri-
butions. GPDs provide an adequate description of the
nonperturbative soft mechanism, they also allow to study
transition from soft to hard mechanism.

Distribution amplitudes ϕ(x) provide quantum level
information about longitudinal structure of hadrons. In
principle, they are accessible in exclusive processes at
large momentum transfer, when hard-scattering mecha-
nism dominates. GPDs have DA-type structure in the cen-
tral region |x| < ξ.

Generalized parton distributions H(x, ξ; t) provide a
3-dimensional picture of hadrons. GPDs also provide some
novel possibilities, such as “magnetic distributions” re-
lated to the spin-flip GPD E(x, ξ, t). In particular, the
structure of the nonforward density E(x, ξ = 0, t) deter-
mines the t-dependence of F2(t). Recent JLab data give
F2(t)/F1(t) ∼ 1/

√−t rather than 1/t expected in hard
pQCD and many models —a puzzle waiting to be resolved.
The forward reductions κa(x) of E(x, ξ, t) look as funda-
mental as fa(x) and ∆fa(x): Ji’s sum rule involves κa(x)
on equal footing with f(x). Magnetic properties of hadrons
are strongly sensitive to dynamics, thus providing a test-
ing ground for models. Another novel possibility is the
study of flavor-nondiagonal distributions, e.g., proton-to-
neutron GPDs accessible through processes like exclusive
charged-pion electroproduction, proton-to-Λ GPDs (they
appear in kaon electroproduction); proton-to-Delta —this
one can be related to form factors of the proton-to-Delta
transition (another puzzle for hard pQCD). The GPDs
for N → N + soft π processes can be used for testing
the soft-pion theorems and the physics of chiral-symmetry
breaking.

An interesting problem is the separation and flavor de-
composition of GPDs. The DVCS amplitude involves all
4 types: H,E, H̃, Ẽ of GPDs, so we need to study other
processes involving different combinations of GPDs. An
important observation is that, in hard electroproduction
of mesons, the spin nature of the produced meson dictates
the type of GPDs involved, e.g., for pion electroproduc-
tion, only H̃, Ẽ appear, with Ẽ dominated by the pion
pole at small t. This gives access to (generalization of)
polarized parton densities without polarizing the target.
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10 Summary and conclusions

The structure of hadrons is the fundamental physics to be
accessed via GPDs. GPDs describe hadronic structure on
the quark-gluon level and provide a 3-dimensional picture
(“tomography”) of hadronic structure. GPDs adequately
reflect the quantum-field nature of QCD (correlations,
interference). They also provide new insights into spin
structure of hadrons (spin-flip distributions, orbital an-
gular momentum). GPDs are sensitive to chiral-symmetry
breaking effects, a fundamental property of QCD. Further-
more, GPDs unify existing ways of describing hadronic
structure. The GPD formalism provides nontrivial rela-
tions between different exclusive reactions and also be-
tween exclusive and inclusive processes.
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